ESD-TR-70-256

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

THE LEAP USER'S MANUAL

LINCOLN MANUAL 93

ESD ACCESSION LISL
e No. /1 235

Copy No. 1/ of / cys.

P.D. ROVNER
Group 23

11 September 1970

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Advanced Research Projects Agency of the

Department of Defense under Air Force Contract AF 19(628)-5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON MASSACHUSETTS

Ao 3 123

ABSTRACT

This document is a user's manual for the LEAP language. LEAP
is an extended algebraic programming language which is similar in form
to ALGOL.8 Extensions include language forms for display output and
interactive input and facilities for building and manipulating associative
information structures. The basic algebraic language is described in

Sections I through IX; the extensions to LEAP are presented in the Appendices.

Accepted for the Air Force
Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

ii

II.
III.

IV.

VI.
VII.
VIII.
IX.

CONTENTS

VARIABLES

A. Declarations
CONSTANTS

DYNAMIC VARIABLES

A. Arrays

B. Textarrays

C. Matrices
EXPRESSIONS

Arithmetic Operators
Boolean Operators
Matrix Operators
Miscellaneous Matrix Expressions

Array and Textarray Expressions

2 e @i e

Textarray Operators

G. Conditional Expression
STATEMENTS

A. Assignment Statement
B. Transfer-of-Control Statements
1. Unconditional Go
2. Conditional Go

3. Switch

If Statements

Iteration Statements
Compound Statement
Blocks

COMMENTS

PROCEDURES

RETURN STATEMENTS
PROGRAM LAYOUT

AR 00

iid

(2304 B~ O N W

[T S T e T e T S L S e e O I T J oy W T i W)
N = O W W W 0 N N OO O O bbb ww N = O N

Appendices

II.
I,
Iv.

AL
VII.

VIII.

IX.

Primitives for Display Output
Assembly Code Option
Primitives for Interactive Input
Teéxt and Numerical 1I/O
Sub-Program Linkage Facility
Error Detection in LEAP
Miscellany

Synonyms

NOKBBF

External Procedures

GETFROMKB

Compilation Mode Options

Miscellaneous Reserved Functions
and Procedures

Primitives for Data-Structuring: the Associative
Sublanguage

Primitives for Text and File Manipulation

iv

23
29
31
39
52
56
64

74

90

I. VARIABLES
One may declare and use VARIABLES in LEAP. A variable is an
entity which has a NAME, a DATA TYPE, and a VALUE. The NAME of a

variable must consist only of alphanumeric characters and must start
with a letter. The number of characters allowed in a name is unlimited.
The DATA TYPE of a variable must be one of the following data types:

REAL

INTEGER

BOOLEAN

FIXED (i.e. fixed point fraction)

MATRIX

TEXTARRAY

REAL

INTEGER

BOOLEAN

FIXED

ARRAY

The VALUE of a variable is an algebraic quantity having the specified data
type. For example, if X were an INTEGER variable, it might have 46 as its
value. If Y were a BOOLEAN ARRAY, it would have an array of BOOLEAN
numbers as its value.

A. DECLARATIONS

All variables must be declared. The declaration of a variable may
occur either at the beginning of the LEAP program or at the beginning of
the outermost COMPOUND STATEMENT within which the variable is used
(see the discussion of COMPOUND STATEMENTS in Section V.E). A

typical declaration has a data type specification , a list of names, and
a semicolon. Examples:

REALX, Y, Z;

INTEGER ARRAY A, B;
A dynamic variable (a MATRIX, ARRAY or TEXTARRAY) may be declared with
information about its dimensions; for a complete discussion of dynamic

variables, see Section III.

1§68 CONSTANTS

Integer constants are converted to either radix 8 or 10, depending
on their form. Including sign, integer constants consist of 36 bits, float-
ing point constants of 27 bits of mantissa and 9 bits of characteristic, and

fractions of 36 bits, Omission of a preceding sign indicates a positive

number.
1. Decimal INTEGER constants are expressed by 1 to 11 digits
written without a decimal point.
Examples:
3
5:.27
=321
923
254 Octal INTEGER constants are expressed by 1 to 12 octal

digits and are written with a terminal decimal point.

Examples:
S
s
770770770777.
3 REAL (i.e., floating point) constants are expressed in two

ways, either by digits both before and after the decimal point (for example,

2.5 or -0.3), or by the exponential designation with an optional decimal

point:
Examples;
-2E-3 equals -0.002
«2E7 equals 2000000.0
2.E10 equals 20000000000.0
4, FIXED (i.e., decimal fraction) constants are expressed by a

decimal point followed by 1 to 10 digits:
Examples:
2 &
a 37
.002

S

6.
“FALSE" (Note:
THUS:

There is no facility for octal fraction constants in LEAP.

BOOLEAN constants are expressed as either "TRUE" or

this is not valid for typed input to a READ statement).

35,0 is
35 is
35. is

<35 is
TRUE is

REAL

decimal INTEGER
octal INTEGER
FIXED

BOOLEAN

QUL DYNAMIC VARIABLES

A. ARRAYS
An ARRAY is an ordered collection of ELEMENTS. A particular array
element is indicated by specifying a unique subscript for the element, as

illustrated below:

(1) AR, E2,E3, ..., En

In (1), the "Ei" are any INTEGER expressions, "n" is the number of dimen-
sions of the array, and A is the name of the array.

Each array element has a value. The data type of the elements of
an array is specified when the array is declared (e.g., REAL ARRAY A;).

An array may be declared with size and dimension information;
if this information is specified, then storage will be allocated at
program execution time for the array elements. If this information is not
specified, then no storage will be allocated until a statement is executed
which explicitly assigns storage to the array for its elements (see the
discussion of the assignment statement in section V-A.). The following
is the form for an array declaration with size and dimension information:

(2) (type) ARRAY (name) {al to a, b1 to bz, Ceen 2y
In (2), (type) is either REAL, INTEGER, BOOLEAN, or FIXED. The (name)

to zz};

is the name of the array. The other parameters are explained below:
a1 is the lower bound on the first dimension (if there is to be only
one dimension, then a, must equal 1)

1

a2 is the upper bound on the first dimension

bl is the lower bound on the second dimension
b2 is the upper bound on the second dimension, etc.
There is no limit on the number of dimensions, and the bounds may be any
INTEGER expressions.
B. TEXTARRAYS
A TEXTARRAY is a single dimensional array of characters, each repre-
sented by its integer character code. Like the ARRAY, a TEXTARRAY may be

declared with information about its size (the maximum number of characters

in the TEXTARRAY, including the 777. character);

(3) TEXTARRAY (name) AE ;

If no size information is given, then no storage will be allocated for the
TEXTARRAY elements by the declaration. This storage will be allocated

only by a subsequent assignment statement. In (3), (name) is the name
of the TEXTARRAY, and AE is an INTEGER expression specifying the size

of the TEXTARRAY.
A TEXTARRAY element is indicated by specifying its subscript:

Examples:

IF TAI= 777. THEN ...

777. —~TAI;

Gs MATRICES

The MATRIX in LEAP 1is a highly specialized entity. It always has
two dimensions, and its elements are always REAL numbers. Only one ex-
ponent is kept for all the elements; the elements are scaled appropriately.
Thus, information is lost if the values of elements differ by too many orders
of magnitude.

Matrices may be declared with no information about the number of
rows and columns (e.g., MATRIX (name);), or with such information given:

(4) MATRIX (name) aj BY bl:
If no dimension information is specified, then no storage will be allocated
for the matrix elements by the matrix declaration. As in the case of the

array, this storage will be allocated only when an assignment statement

explicitly assigns storage to the matrix.

If, as in (4), dimension information is specified, then appropriate
storage is allocated for the matrix, and all elements are initialized to zero.
In (4), ay .and b1 are INTEGER expressions. The declared matrix will have
aj] rows and by columns.

A matrix element is indicated by specifying the name of the matrix,
the row index, and the column index. These indexes may be any INTEGER
expressions between 1 and 256. Examples follow:

M (1, 2) row 1, column 2 element of M

M (K, T+ 1) row K, column J + 1 element of M

Matrices were introduced into LEAP to implement the parametric
homogeneous matrix representation for points, lines, and conics which is
described in Reference 9. LEAP has facilities for multiplying, inverting,
and adjoining matrices. A complete presentation of the operations which
apply to matrices is given in Section IV. C.

LEAP also has a facility for generating the appropriate display
instructions from a parametric homogeneous matrix description of a point,
line, or conic (see Appendix I).

Note: The word USELEAP must follow START in every LEAP program
in which MATRICES are used.

IV e EXPRESSIONS

Variables, constants, elements of dynamic variables, and/or

EXPRESSIONS may be combined by OPERATORS (e.g. + and -) to form

EXPRESSIONS. An expression has a data-type, and a value. The value is

computed by performing the indicated operation. For example, if X is a
REAL variable having 3.6 as its value, and Y is a REAL variable having 1.0
as its value, then

X+4.2xY

is a REAL expression with 7.8 as its value.

Note that we would expect the multiplication to be done before the

addition when the above expression is evaluated. In LEAP, the multiplication
operator (x) is said to have "higher precedence" than the addition operator (+).
We can classify the operators in LEAP by specifying their relative precedence,
or "binding power." The remainder of this section is a tabulation of the
operators in LEAP, organized in groups by operand type, and arranged within
groups in order of decreasing precedence. Note that the expression scan is
done from left to right. When operators of equal precedence are adjacent,
e.g., A+ B+ C, then the evaluation is performed from left to right, e.qg.,

(A+ B)+ C. When operators of different precedence are adjacent, the
operator of higher precedence is treated first. When in doubt about precedence,

parenthesize.

In what follows,

A, Al, A2, etc. will represent ARRAY's

TA, TAl, TAZ2," " * TEXTARRAY's
M, M1, M2, " " MATRIX EXPRESSION's
AE, AEl, AE2, " " = ARITHMETIC EXPRESSION's
B, Bl BZ, AU " BOOLEAN EXPRESSION's
A. ARITHMETIC OPERATORS

The operands for arithmetic operators are of REAL, INTEGER, or
FIXED types, and may be mixed indiscriminately in expressions. The result

of mixed arithmetic is always REAL.

av
a4

dv
(@3axid) av
(43D3LNI) IV

(M3DJLNI) v

(Tvay) av
av 10 g
av

g

(43D3LNI) I¥
(Tv3y) av

(¥IDILNI) IV
dv 10 g
(Tv3y) av
IInS3y

&~ s W

L
8

dONIAID3ud

qv- snujw Areun

v + snid Areun

v || anfea ajnjosqe
aw j1ed [euorioely ayy axey

v 4§ (y3oarINI
ue 03 I8AU0D) JLVONNYUL

v A (4ADILNI
ue 0] 113aU0D) ANNOY

av YV (Tv3y e 01 112au0d) I¥OT1d
(IIA NOILDOJS 33s)

(3V) I91TWI[9p uolssaidxas
(z3qv) 13v 1 ° J7 dNYL ‘1893 119
(3ub11 23

1e bunels ‘9¢ 03 1 woyy

(SYIDHILNI a1e ¢qY parsqunu ale s}Iq sIlaym

:310N) ‘¢d¥ nay3 zIv siq)
(€qV =« z3v) 13V ajyomdns
(zav’' 1dv) W luswa[a XNILVIN
E.<.<.H. juswala AVIUYV.LXIL

'3V 13V

v JUDSWOTo AVHYY
Nm<ﬂm< uonierjusuodxa
INYOJ DONINVIN

A
: 4

[Ted NOILONNJ
sasayjuaied

dYy Aq popsoaid sasayjuared

«dNVH. Yilm sasoyjuared

PWWOD YiIm sasayjuaed

idriosqns
1driosiodns

HOIVYIdO

*(sauo [[e " *° s3IsIXd Q- *9°1) auryoew juswardwod s,9uo e ST Z-XL +ILON

v I deq@ﬁ.z I10-aATSN[OX9 [e2160] @
suopessdo) oy 1 Zav A 13V (4O) uotun [eotb0] A
19 49 119

dv r4 23¥ V 13V (ANV) 309s193UT [e0160] v

<

>

d £ 2d¥ = 13v SuoTIR[a1 OTI_dWYITIe <

>

o + 1o #
av v 2dav - 13v uonyoenqgns -

av v Zav + 13¥ uonirppe +
(43DILINI) IV S zav# 1av WIYs 191 3+

(*z3y ‘uorsseaidxas

YIODOILNI 8yl Jo snyea

9yl ST N @219ym ‘soaoerd

Areurq N b1 ay3 03

poyTYs sT 13V Jo anfea

aql ST yorym Ajrauenb
(dd93LNI) v S zav 4 13v 119 9¢ 9YlL) 1J1ys 1yb1I 4
av S 2av / 13v UOTSTAIP /

av S 2av x 13V uonedrdpnu X

LINsay dON3a3ddaud WIOJ SNINVIN JO.LVYadO

10

B. BOOLEAN OPERATORS

PRECEDENCE

OPERATOR MEANING FORM
. "NOT" ~B
A "AND" Bl A B2
\V "OR" Bl v B2

@ ' "exclusive OR" Bl@BZ

RESULT

B
B
B
B

! I IN# TN 1sa3 Lyrrenbaur XTYIVIN $ 10 #

q { IN =1 1sa31 A31renbe XTYIVIN =

W 4 N - TN uonoenqgns XIHILVIN =2

W C TN+ TN uonirppe XMIVIN +

W £ n - 1- Aq Ardnpnw Jejeos -

(Tv3y) IV v W | jueUTWIS}OP l
(M39DJLNI) IV b N Du SUWN[oo jO Jaquinu Du
(43DILNI) v v N yu SMOI JO Jaquinu yu
W S N | TN 1yb1 ay3 03 ujofpe |

W S TN/ TN mof[aq utofpe /

N S N X TN uopjeoTfdiynu Xrnew x

N 9 W x J¥ uonjeordri[nu Iefeas b

W L HE mmoamﬂmh 1

W L 22 asl1aauf 1

SITnsS3d dONIq3IDIud NYOJ ONINVIN SHOIVY3AdO

SHOLVY3IdO XIHMLVIN e

12

D. MISCELLANEOUS MATRIX EXPRESSIONS

FORM
AEL¥)po By AE3

AE18)r2 BY AE3

M (AEL. AE2):p3 By aE4

MEANING

A MATRIX having AE2 rows and AE3 columns,
where all elements have value AE].

A MATRIX having AE2 rows and AE3 columns,
where all off-diagonal elements have value
0.0, and all diagonal elements have value AEl.

Submatrix of M, starting at row AEl and column
AE2, for AE3 rows and AE4 columns.,

13

"8, 4L °q PINOYS AVHNVIXIL © ur Isjoereyo isef ayl :IION

(4IDIINI) v YL ||
d VL # 1YL
d VLl = 1Vl

SITNSTd W30d

*uotrssaldxa AVYYYIXIL © ST STyl

*uorssaidxa YIHIINI ue aq prnoys

W 1AV, °019Z 03 pazienIur ST yoIlym JO yoea ’sjuawalad

19V YItm AVYYYIXIL © anfea siT se sey uoyssaidxa syyL,

"1 01 Tenba 13V 2ARY I1SnW SAVHUY
[euotsuawip afhuls jeyj 9j0N °s[Ieiap I10] Y III uorioas
998G 019z 0] pazZI[RIIIUl 2Ie SJUBWS[D [[L 219Ym ’SUOISUDWIP

PO1ROTPUT 9] JO AVYYY Ue anfea s3T se sey uorssaidxo sTyJ

DONINVIN

(1030RIRYD */// Burpnioul JON)
Ss19)doeiey)d Jo Jaquni JO junod :

1sa] A3rjenbaug 7
159 Ajjrenb3g =
DNINVIN SY0IvYIdo

SY40IvVd3ddO AVRUVIXAL °d

,J10NO HDONIGATOXT ‘DONIYLS YILOVEYHD AYVULIGHY .

{13V} AVHEYIXAL

{* " 'p3V 03 ¢4V 'ZIV 01 1aV} AVYYV

AR (OF |

SNOISSHUIXd AVUYUVIXIL ANV AVHYY ‘

14

G, CONDITIONAL EXPRESSION

Genecral form; (B> El., E2).
This expression has either E1 or E2 as its value, depending on whether the
BOOLEAN expression B has value TRUE or FALSE, respectively. El and E2
are expressions which must have the same data type. This may be any

allowed data type, including MATRIX and ARRAY, for example.

V. STATEMENTS
There are a number of imperatives (called STATEMENTS) in the.
LEAP language. These are used to modify the values of the program
variables and the flow of control through the program. All statements in
LEAP must be terminated by one of the following, depending on context:
END
ELSE
A. ASSIGNMENT STATEMENT

General Form: <expression> - <variable or element of
a dynamic variable>;

This statement causes the value of the indicated variable to be reset to the
value of the expression.
Examples: REAL X, Y;
MATRIX M;
4.0~ X;
Xx2.0=-Y;
0,0 #3 Bt M;
1.0-M (3, 3);
Data type conversions take place where required and allowed. The following
table shows the allowed and resulting conversions. Blanks indicate that the

conversion is not allowed.

15

VARIABLE
‘ TYPE
EXPRESSION
TYPE REAL FIXED INTEGER BOOL.
* Integer*

REAL Real Fixed (rounded) -
FIXED Real Fixed == ==
INTEGER Real - Integer -
BOOL. - - -- Bool.

The assignment statement may in fact be an expression if it is nested. This
facilitates multiple or intermediate stores. For example,
1-A-B;
assigns the value 1 to both A and B.
The subword form may be used as a variable in an assignment state-
ment. Example:

INTEGER X;
3 - X (1 = 4);

A special case of the assignment statement is the sub-matrix store
command. Example:
MxN-M (3, 5);
The matrix expression on the left will replace the sub-matrix of M whose
upper left-hand element is in row 3, column 5. If the new sub-matrix will

not fit into the indicated space, an error will be indicated at run-time.

‘ * No check is made for overflow: strange things may occur if a REAL number
larger than or equal to 1.0 is converted to a FIXED.

16

B. TRANSFER-OF-CONTROL STATEMENTS
BL. Unconditional Go
General Form: GO
GOTO <statement label>;
GO TO

The GO statement causes a transfer of control to the statement indicated by
the "STATEMENT LABEL." A STATEMENT LABEL is a sequence of alphanumeric
characters, starting with a letter, which is assigned to a statement by
prefacing the statement with <statement label> = .
Example: 1.0-X;
Ll » X+1.0-X;

GO TO L1;
B2. Conditional GO Statement
General Form; GO
GOTO D <label 1>, <label 2>;
GO TO

This statement causes control to go to either statement label 1 or statement

label 2, depending on whether the BOOLEAN expression is true or false.

17

B3. Switch Statement

General Form: SWITCH VIA <INTEGER expression” TO <list of
statement labels>;

This statement causes a transfer of control to the statement label indicated
by the value of the INTEGER expression. If this value is out of bounds, an
error message will be given.

Example: INTEGER I;

SWI&‘CH VIAITO L1, L2, L3;
If I =1, then control will go to L1.
If I = 2, then control will go to L2.
If I = 3, then control will go to L3.
Cie IF STATEMENTS
General Forms: (1) IF THEN <statement 1> ELSE <statement 2-;

If the BOOLEAN expression is true, <statement 1> is executed; if it is false,

<statement 2> is executed. If there is a "dangling ELSE" clause, it is

associated with the innermost IF clause. Example (la and 1lb are equivalent):
la. IF <B1>THEN

IF <B2> THEN
< statement 1-

ELSE
<statement 2>;

1b. IF <B1> THEN
BEGIN
IF <B2>THEN
<statement 1>
ELSgstatement 2>
END;
(2) IF THEN <statement>;
the <statement™ is executed only if the BOOLEAN expression is true.
The word IFNOT may be used instead of IF in the above forms; in

this case, the BOOLEAN expression is complemented, and then examined.

18

D. ITERATION STATEMENTS
General Forms: (1) FOR Ej = P STEP Ej 3

TO
THRU

where E), Ey, Ej are arithmetic expressions, P is a non-dynamic variable

2 E3 DO S;

or an array element, and S is a statement.
This statement causes statement S to be executed once for each new
value of P, the iteration variable. The statement is executed as if it were

written as:
El - P;

L1 1F |l P> E; THEN GOTO L2; (see note 1 below)
S;
P+ Ez - P;
GOTO L1

L2r

(2) FORE, - P STEP E, Vglg%ﬂms;

where E), E5 , E3, P and S are as above, and B is any Boolean expression.
Execution of this statement is analogous to the previous statement. Ex-
ecutions of statement S continue as long as:

(a) B is true (WHILE)
(b) B is false (UNTIL)
WHILE

= P B DO S;
(3) FORE, g i DOS

where El , P, B, and S are as above. This statement behaves as indicated

in (2) above, except that the iteration variable is not incremented.

WHILE :
(4) UNTIL B DO S;

where B and S are as above. This statement behaves as type (3), but has
no iteration variable.

CONTINUE STATEMENT

This is a statement which causes a jump to either the incrementing or
testing part of the FOR statement when execution of the remaining body is
not desired.

Example: FOR1l - PSTEP 1 TO 10 DO

BEGIN IF P.= 7 THEN CONTINUE:
END;

would cause execution for values of P = 1 through 6, 8 and 9.

Note 1: For TO, this operator is >; for THRU, the operator is >. If the
iteration variable changes sign or ever equals zero, then another
form of the FOR statement should be used.

19

E. COMPOUND STATEMENT

It is often desirable to have a number of statements act as a single
statement, A group of statements which is preceded by the word BEGIN
and followed by the word END is called a COMFOUND STATEMENT. Note
that compound statements may be nested.

Compound statements may have "local" declarations of non-dynamic
variables (of types REAL, INTEGER, BOOLEAN, and FIXED) immediately fol-
lowing the word BEGIN. These variables are "local" in the sense that they
may not be referenced from outside of the compound statement, but they may
be referenced anywhere between the current BEGIN-END parentheses. The
NAMEs of these variables may have been used in an outer compound state-
ment or in the main program declarations. In this case, a NAME always
refers to the variable declared in the current innermost compound state-
ment. Note that one may GO into the middle of a compound statement.

B BLOCKS

A compound statement in which dynamic variables are declared is
called a BLOCK. Iteration statements, . = B statements (see
appendix 2), and PROCEDURES (see section VII) are also BLOCKS. One
may not GO into the middle of a BLOCK.

V. COMMENTS

Comments may occur anywhere in a program where a statement or
declaration may occur, Comments begin with the word COMMENT, and
end with a semi-colon. Any string of characters (excluding semi-colon)

may appear in between.

VII. PROCEDURES

A PROCEDURE is a subroutine which may or may not expect input
parameters and may or may not return a result. A PROCEDURE must be
declared before it is called. A PROCEDURE declaration must occur in a

declaration portion of the LEAP program (see section IX) in one of the

20

following forms:

(1) <REAL, INTEGER,BOOLEAN, or FIXED> PROCEDURE
<name of procedure> <plist>; <statement>;

(2) PROCEDURE <name of procedure> <plist>; <state-
ment>
In the above, the <cname>is any string of alphanumeric characters,
starting with a letter. The «plist>is a list of "parameter declarations,"
separated by semi-colons, preceded by {, and followed by }. If the pro-
cedure takes no parameters, the <plist> is absent. A "parameter declara-
tion" consists of a data type specification, followed by a list of names which
are separated by commas.
For example, the declaration of a PROCEDURE to find the largest
number in an array and store it in a specified cell would look like this:
PROCEDURE BIG {INTEGER ARRAY A; INTEGER AM, AB};
BEGIN INTEGER I;
Al - AB;
FOR 2 -1 STEP 1 UNTIL I>AM DO
LE AI>AB THEN AI - AB;
END:;
In this procedure, A, AM, and AB are procedure parameters. They represent
the true arguments given the procedure when the procedure is "called." Two
additional declarations are allowed in a procedure declaration to describe
arguments. They are;
LABEL Ll' LZ’ e » & Ln;
(type) PROCEDURE P1 ;
Examples: REAL PROCEDURE PYTHAG {REAL A, B}:
INTEGER PROCEDURE AVG {INTEGER I,]}
PROCEDURE TEST {REAL PROCEDURE P; LABEL TAGY:

A procedure "call" may occur as a statement or an expression depend-

s P2, P3; (Again, type is optional)

ing on whether a data type precedes the word PROCEDURE in the procedure

21

declaration. A procedure which is to be used as an expression is called
a FUNCTION. The procedure call has the following general form:
<procedure name> <a list>

The <a list>is a list of expressions, variables and elements of
dynamic variables, separated by commas, preceded by {, and followed
by }. If the procedure takes no parameters, the <a list>is absent.

The data type of each element in the <a list>is compared with
the declared data type of the corresponding element in the <p list>, and
an error is given if these do not match. For example, the following is a
statement calling the procedure declared above:

BIG {1LIST, 100, LARGLST};

where LIST is the name of the array, 100 is the maximum size, and LARGLST
will contain the largest element after the procedure is called. Note that
there are two kinds of parameters in the above example:

(1) parameters which are not changed by the action of the
procedure, but whose values are used (VALUE parameters:
LIST and 100, for example)

(2) parameters whose values are changed by the action of
the procedure (REFERENCE parameters: LARGLST, in
this case).

In LEAP all variables and dynamic variables may be passed to pro-
cedures as REFERENCE parameters; also, elements of ARRAYS may be

passed as REFERENCE parameters. However, TEXTARRAY elements, subword
expressions, and MATRIX elements may NOT be passed as REFERENCE para-

meters to. procedures.

VIII. RETURN STATEMENTS
Normally, procedures and functions return to the calling statement
at completion. However, an additional statement is provided to cause the
procedure or function to return from anywhere within the procedure body.
General Form: RETURN E;

where E is required for functions and not allowed for other procedures.

22

E must be of the same data type as the function. This statement causes
the procedure to return to the calling statement. If the procedure is a
function, then the function value is E.
Example:
FUNCTION | REAL PROCEDURE LARGEST {RBAL X, Y};
DECLARATION{ IF X >Y THEN RBTI{'RN X ELSE RETURN Y;

FUNCTION '
LARGEST {4.0/1\, z.o/B} o 5O s

CALL

IX. PROGRAM LAYOUT
Each LEAP program must start with the word START and finish
with the word FINISH. The remainder of the program consists of two separate
parts: a sequence of declarations, followed by a sequence of statements.
Example:
START
REAL X, Y, Z;
ARRAY A {1 to 40};

GOTO ° L;
FINISH

23

APPENDIX I

PRIMITIVES FOR DISPLAY OUTPUT

The display output facility in LEAP consists entirely of a collection of

library procedures for constructing and modifying a "picture data structure".
*

The picture on the screen at the console is generated by a display processor

which accesses and interprets picture-drawing commands from this picture data

structure. Typical commands tothe display processor are:

* %k

1) Place a dot at a specified position on the screen.

2) Draw a line or conic segment from a specified screen position
with a specified slope and length.

3) Display specified text starting at a specified screen position.

4) Call a "display subroutine", to be centered at a specified

position relative to the current frame of reference.
The "picture data structure" is simply a collection of display subroutines (called
GROUPS), each having a unique 16-bit integer identifier (ID). Each display sub-
routine (GROUP) consists of a collection of display ITEMS, each having a 16~bit
integer identifier (ID) which is unique within that collection of items. There are
two kinds of display items:
1) A linear sequence of commands for drawing simple picture fragments

and moving the beam, and

‘ * Effectively a separate, special purpose computer (see reference 1).

** Al positions are REAL expressions, ranging from -1.0 to +1.0.

24

2) a "use" of a display subroutine, which causes the indicated
picture to be displayed as a subpicture of the group.
The library of procedures for constructing and modifying display groups and items
is tabulated below. Note the facilities for blanking items, drawing dotted
lines, moving the unintensified beam, deleting groups and items, and creating
uses. Groups are created automatically when required: e. g. when a use is
made of a non-existent group; when an item is "put" into a non-existent group.
When a group is deleted, all uses of it are automatically deleted. Display
subroutines (groups) are not re-entrant: the "structure" of the picture resembles
a tree.
One creates the first kind of display item as follows:
1) Declare the ID of the display item (a 16-bit integer) with a
"SETITEM" call,
2) Put points, lines, conics, and/or text into the display item via
PUTPNT, PUTLINE,* PUTMAT**, and PUTTEXT calls, and
3) Put the display item into a group via the PUTITEM call. (If the

display item is put into group zero, it will be displayed.)

The line will be drawn from the last position of the beam.

** The PUTMAT routine expects as input the parametric homogeneous matrix

representation of a point, a line, or a conic. Tor further information about
matrix representations of picture parts, see Reference 9.

25

As an example of a LEAP program which uses the display output
facility, we have written down a program to display the scope diagonals:
START

CLEARSCOPE;

SETITEM {1};

LOADPNT {-1.0, -1.0};

PUTLINE {2.0, 2.0};

PUTITEM {0};

SETITEM {2;

LOADPNT {1.0, -1.0};

PUTLINE {-2.0, 2.0};

PUTITEM {0};

FINISH

26

(°qn3 abeicys ayl 03
Juds sy 193Inq way Ae(dsip jusind ayy)

(1333ng walr Aerdsip jJuLLIND
9Y3 01 pepuadde sy prom pajeoipul ayl)

(Pa1ea[o jou ST J9jjng Walf
Aerdstp ay3 3dsoxs ‘NIIILIS O3 Jeruys)

(III XIANI4Y 995)

(0TUOD pallop B MmeID)

(au1l polIop B MEIP)

(Aj1sus3ur 3,u0p INg ‘wesq ayl saouw)

(Aj1suaiur 3,uop Inq ‘wesaq ayy uopysod)

(suoTssaidxe TydY)

(d1nionais Aeqdstp oy ozifentul)

dNON

{<ITDIINI HQ 9€ >}

{<dI ws3r Aerdsip>}

{<€ 10 "Z'1'0 *4AON Nid>< dl dnosb Aerdsip>}
{<uorssoaidxa XIHIVIN>}

t<Ay> <X 7>}

(<AD> '<XWP}

{ <uomitsod x> ‘<uonirsod xof

{<uonisod-x>’ < UORTIS0d- X> ‘< AVNIVIXILS)
{ <uoyssaidxs XIYIVIAP}

~A<v ‘X V>

{<uontsod x> ‘<uoprsod X>f

t <dI wely Aerdsyp>

dANON
dNON

SUALINVHVd

LNdLNO AVTISIA YOJd STUNAIDOUd dIAYISIY

WILITYOLS

asind

dIWNILILISIY
ddONWNIdLIS
IYINIOALNd
ANITIOQINd
dNITAvO1
INdavO1

IXILLNd
IVININd
dINITINd

INdINd
WALIL3S

JIONUNL
IdODSHvdTD

JNVN JYNAIO0Ud

2T

‘poyuriq uUayl ‘edouo padefdsip ST 9dueRISUT Y]

{<I9jued X mau> ‘«Jolu9d X Maus ‘<l dnoib Aefdsips ‘«dl wall >£Qm%vw

ﬁAumucmo A> ‘<I9juU80 ¥> ‘<dnoib 350y JO QI > ‘<ddueisur jo dI> ‘«dnoab adAjoloid 30 dh

= MAumucmo & '<«I91udd X ‘«dnoib 1soy jo JI> ‘<d@doueisur jo > ‘<dnoib adLiojoxd jo m:vw
(dnoab Aerdsip e 931919p) ﬁ <l dnoib >mam%vw

(walr Ae[dsip e 931919p) {<dI dnoib Aeidsip> ' ‘<l wall >£Qm%vw

{<dl dnoib Aerdsip> ‘ <l walr >mam%vu

{<dI dnoi1b Aerdsip> ‘ <dI wa Aerdsip >§

(poxuelq uayl ‘9ouc padeldsip ST WAl 9Y3l) {<dI dnoib Aepdsips}
{ <«dl dnoib AeldSTP>}

SH3ILINWVHVd

¥

dSNAON
IONOJ¥DIsN
ddD3IsN
d4oOT14dd
INJLITIA
INTLIANVIENN
INJLIANVIH
JONOWAILILNd
INILILNd

JNVN 3FNAIO0Ud

28

NOTES

(1) The X and Y coordinates of the display run from -1.0 to +1.0

(2) All ID's are INTEGER expressions

(3) All positions are REAL expressions

(4) The PUTITEM procedure does not re-initialize the display item
buffer. This implies that one may build a display item and copy
it into more than one group. Also, one may build a display item,
copy it into a group, then add more to the display item, copy it into a

group and so forth.

29

APPENDIX II
THE ASSEMBLY CODE OPTION

A. General Description

A brief version of TX-2 assembly code has been implemented in LEAP
allowing the assembly and execution of machine code in LEAP programs. The

current implementation has no macro facility.

B. Format
To begin assembly coding, the user types E . This character
causes the compiler to look for MARK S information. [E] marks the

end of the assembly information and the compiler returns to normal LEAP

processing. The form --- [E] : is equivalent to a statement in
LEAP.
C. Restrictions and Notes

1. Equalities are permissible, but all symexes used in forming
the equality must be defined.

2. The special symexes A, B, C, D, E are not automatically avail-
able, although they may be defined as equalities by the user.

3. Configs, hold bits, bit instructions, double indexing, and RC's
are allowed. When defining a bit, however, it is necessary to separate
the quarter-bit number by a comma (not a period).

Example: SKN4 3 YB
Configs and subscripts must also be single symexes.

4. When reference is made to a LEAP variable, the address of the
variable is used. This means that in the normal case LDA Q will put the
value of Q (a LEAP variable) in A.

5. All MARK 5 equalities and instructions must end with semicolons,
except for the last where is used.

6. Forward references are allowed in restricted cases. These are;

* MARKS is the assembler for TX-2.

30

a) No operation is performed on the symex.
b) The symex is defined later by a '=' in LEAP or a '=' or
'=' in MARK 5.
7. Tags are assigned by use of a '=' or '~' followed by a MARK §
instruction, constant, etc.
8. There is no comma convention and constants follow the rules

of LEAP. Octal integers must therefore be followed by a decimal point.

Example: JED 56- and 21 LDAX
9. One may not refer to a label or equality which has been defined
in .. statement from anywhere outside that statemant (e.g.,
equalities are "local" to the : B statement in which they are

defined.

31

APPENDIX III

PRIMITIVES FOR INTERACTIVE INPUT

The facility for non~typewritten interactive input to a LEAP program
has two parts:
(A) a set of reserved variables and functions which directly
indicate the current state of the indicated input device
(see Table IIIA), and
(B) a simple sublanguage for communicating with the part of

the time-sharing system which handles input interrupts.

The interrupt sublanguage allows LEAP programs to "activate" the

’

various input devices at a TX-2 console,2 thereby asking the time-sharing
executive to gather relevant information at the exact time that an input

event occurs, and report this information to the user when he is next

active. The user may ask for certain status information to be recorded

along with the specified input event. For example, he may ask that the

real-time clock reading be recorded whenever a knob changes state:

(1) ACTIVATE SKNOBS REPORTING _SRTC*;

The time-sharing executive reports input information to the user by
maintaining a list of events, each with appropriate cause and status infor-
mation. The user may ask for information about the next event; an entry will
be removed from the list of events, and the cause and status information will
be reported to him. If the list is empty, he will be notified. The
user calls a reserved procedure to get information about the next event:

GETNEXTINT;

This procedure stores the appropriate cause code (an INTEGER) into the reserved
variable aCAUSE, and device status information into appropriate reserved
variables (e.g. if the event were a knob change, the state of the four knobs

would be copied into the reserved variablesaKNOB 1, aKNOB 2, aKNOB 3, and

aKNOB 4). If a request to report the real time clock reading accompanied the
knob activation statement (as in (1)), the reading taken at the time of the

event would be stored into the reserved variable ¢RTC. If the list of events

*reserved words in the language are in CAPITALS.

32

is empty, the GETNEXTINT procedure would store zero into aCAUSE and
then return.
The input sublanguage consists of three special statement forms,
and a number of reserved variables, procedures, and functions,
(1) Statements in the input sublanguage:;
(a) ACTIVATE < input device name> ;
(b) ACTIVATE < input device name>REPORTING < report list>:
(c) DEACTIVATE < input device name> ;

The "input device names" are listed in Table III B. Note that there are
four interval timer device names, each of which may be activated with a
unique interval time, in milliseconds. The minimum interval time is 64
milliseconds; the maximum is 218 milliseconds,

The "report list" consists of one or more "report specifications, "
separated by commas (see Table III C).

(2) Reserved variables in the input sublanguage are presented in
Table III D. Reserved functions are presented in Table III E, and reserved

procedures are shown in Table III F.

RTC
KNOBS
TOGS
EIR
COR
KNOB1
KNOB?2
KNOB3
KNOB4
TBLTX

TBLTY

TBLTSW1
TBLTSW?2
TBLTSW3
TOG1
TOC? 2

TOGS
META

33

DATA TYPE

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
FIXED
FIXED
FIXED
FIXED
FIXED

FIXED

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOI-.EAN

BOOLEAN
BOOLEAN

NOTES

real time clock register
knob register

reg. 377621

8
reg. 3776218
reg. 3776228

quarter 1 of knob reg.
quarter 2 of knob reg.
quarter 3 of knob reg.
quarter 4 of knob req.

x-coordinate of tablet 12
stylus
y-coordinate of tablet

stylus

switches which become
TRUE as the tablet stylus
moves toward the tablet
surface.

BITS 1.1 thru 1.9 of
reg. 377621g- if the

bit is a 1, value is TRUE
0 => FALSE.

META bit on knob register

TABLE IIT A: RESERVED VARIABLES AND FUNCTIONS FOR INTERACTIVE

INPUT,

DEVICE NAMES

BTARGET

STRACKSTART
3TRACKEND
SSWCHANGE

SBINTM1 {<# millisecs>}
3INTM2 {<# millisecs>}
SINTM3 {<# millisecs>)
3INTM4 {<# millisecs>}
BINTMS

8KNOBS

gEIR
gKEYBOARD
SINKING
8TRACKING

34

VALUE OF oCAUSE AUTOMATIC REPORT
(in octal) (in addition to «CAUSE)
1 «ITEMSEEN , «GRPSEEN
2 oTBLTX, oTBLTY
3 oTBLTX, «TBLTY
4 «TBLTX, oTBLTY
G
B e s e e)
7 e
1 0 cmsemeees
i, 0 esdwes =
12 oKNOBI ,oKNOB2, oKNOB3,
«KNOB4
13 «EIR
) S
17 oNUMSTROKES

TABLE III B: INPUT DEVICE NAMES AND THEIR OCTAL CODES, AND

RESERVED VARIABLES AUTOMATICALLY REPORTED.

REPORT SPECIFICATIONS

BKNOBS

gEIR
BRTC
g TBLTPOS

TABLE III C: REPORT SPECIFICATIONS

NOTES
causes oyKNOBI thru ¢qKNOB4 to be set
up.
causes oEIR to be set up.
causes gRTC to be set up.

causes ¢TBLTX and ¢TBLTY to be set up.

35

RESERVED VARIABLES DATA TYPE

oKNOBL1 FIXED
aKNOB2 "
oKNOB3 8
oKNOB4 B
oTBLTX =
oTBLTY o
aEIR INTEGER
aRTC "
oITEMSEEN -
aoCAUSE %
oGRPSEEN .
aNUMSTROKES L

TABLE III D: RESERVED VARIABLES FOR THE INTERACTIVE INPUT

SUBLANGUAGE.,
FUNCTION AND PARAMETERS DATA TYPE NOTES
NUMPOINTS {<stroke number>} INTEGER value is the numbear of ink

points in the indicated stroke

INKX {<stroke number>,<point
number>} X and Y coordinates of the
, FIXED indicated ink point

INKY {<stroke number>,<point
number>}

TABLE III E;: RESERVED FUNCTIONS WHICH ARE RELATED TO THE
INKING EVENT,

36

PROCEDURE NAME

CLEARINK (no parameters)

TURNOFFINTS (no parameters)
CLEARINTS (no parameters)

SETPENMODE {<display group ID>,
<pen mode:; 0,1,2, or 3>}

GETNEXTINT (no parameters)

NOTES

This causes the ink to be removed
from the display, and the inking

machinery to be re-armed.

Turn off all interrupt devices.

Clear out the list of input events.

See Note 5 below.

The GETNEXTINT reserved procedure
reports the next occurrence of an
input event by setting up «CAUSE
with the appropriate code and
setting up the appropriate reserved
variables. If there is no event
recorded, «CAUSE will be set to

zero.

TABLE III F: RESERVED PROCEDURES FOR THE INTERACTIVE INPUT

SUBLANGUAGE.

37

SAMPLE PROGRAM

This program displays a smooth line for every line drawn in with

the tablet stylus.

START
INTEGER

TAGlw=

TAG2"

FINISH

ITEMNUM;

ACTIVATE 8 INKING;

0 -~ ITEMNUM;

CLEARINK;

GETNEXTINT;

IF aCAUSE = 0 THEN BEGIN SHADE; GOTO TAGL END;

IF «CAUSE # 17. THEN HELP;

IF «NUMSTROKES # 1 THEN GOTO TAGZ2;

SETITEM ({ITEMNUM + 1 .ITEMNUM };

LOADPNT { INKX (1,1} tINKY {1,113}

PUTLINE { +INKX {1, NUMPOINTS {1 }}- INKX {1, 1},
t INKY {1, NUMPOINTS {1}3}- INKY {1,1}};

PUTITEM {0 };

C LEARINK;

GOTO TAGI

MISCELLANEQOUS NOTES

1)

One can optionally specify an "inking wait duration" (i.e. time
delay between lifting the pen from the tablet surface and
receiving the inking interrupt) by specifying an integer value

between 0 and 100 when activating inking:

ACTIVATE gINKING {<INTEGER >}
ACTIVATE BINKING {40} REPORTING BEIR;

The increment is 5 ms; the default (normal) delay is 500 ms

(1/2 second).

38

-1 <coordinate value <1

"ACTIVATE PTRACKING" simply renders the tracking dot

visible; no input event is associated with this input device.

CLEARINK must be executed (after activating inking) before

inking will occur.

The "pen mode" attribute of a display group specifies the

relationship between the picture indicated by the group and

information to be reported to the user when a target is "seen"

by the pen.

In the case where a target has subpictures (uses)

as parts, the user must specify which item in which group is

to be reported when a target is seen.

He does this by specifying

a "pen mode" for each display group; this indicates which group

is the "working level": item ID's from this group are reported

when a target is seen. There are four pen modes:

0)

1)

2)

Normal (default) mode: look above here for the
working level.

Picture parts here and below are invisible to the
pen.

(Unused).

Working level: this group contains a group of
targets; report the IDof this group and the ID of

the item seen by the pen.

‘o' prefixes denote reserved variables which are stuffed

by GETNEXTINT (e.g. «KNOBI1).

"8" prefixes denote device names (e.g. g KNOBS).

No prefix (see TABLE III A) denotes a reserved variable

or function whose value is a direct reading of the

indicated device status when the reference is made

(e.g. KNOBI1).

CONTENTS:

39

APPENDIX IV
TEXT AND NUMERICAL 1/0

A. TEXT AND NUMERICAL INPUT

TABLE Al. RESERVED VARIABLES AND PROCEDURES
TABLE AZ. DATA TYPE CODES

TABLE A3.

TABLE A4. READ ERROR CODES

B TEXT AND NUMERICAL OUTPUT
1. TEXTARRAY OUTPUT STATEMENTS
a., PRINT
b. XEROX
c. SHOWTEXT
d. STORETEXT

2. FORMAT STATEMENTS
3. FORMATTED OUTPUT STATEMENTS

a.

PRINT FORMAT

b. XEROX FORMAT

c.

4. T

GATHER FORMAT
HE OUTPUT LIST

ALLOWED DATA TYPE CONVERSIONS FOR THE READ STATEMENT

40

V. A. TEXT AND NUMERICAL INPUT

The facility for typewritten input to a LEAP program is line-oriented
and format-free. Normally (see SETSMACKER procedure), a line which is
being typed in is not processed until a read-in key or carriage return key
is pushed. Five special function keys are allowed;

a) The DELETE key: deletes the previous character typed,
unless there is no previous character on this line.

b) the WORD EXAM key: delete the previous input word on this
line, and any trailing spaces or tabs.

c) the NO key: delete all previous characters on this line.

d) the YES key: types a clean version of the input line so far.

e) the READ-IN key: terminates the line, using it as a text file
name, and pushes the contents of that text file onto the source
of input characters.

An input line consists of a sequence of input words, separated by
spaces and/or tabs. The READ statement takes a list of variables as its
argument, and attempts to read one input word into each variable, working
from left to right, until the argument list is exhausted. If there are not
enough input words to satisfy the argument list, the system will wait for
sufficient input from completed input lines to be typed. As each input
word is read into a variable, allowed data-type conversions are made (see
Table A3). The data-type of the input word is determined from its format
(see the discussion of constants in Section I. A), and the data-type of the
variable is known from its declaration. Only variables of the following types
may be arguments to a READ statement:

REAL
INTEGER
BOOLEAN
FIXED
TEXTARRAY

If a TEXTARRAY variable is the argument, an input word will be copied
character by character into the indicated textarray, starting with the first
element in the textarray. The value of each textarray element will be the

integer character code for the indicated character. The next available

41

element in the textarray will have the value 777g to indicate end-of-word.

The reserved INTEGER variable «CHARCNT will contain the number of

characters read into the TEXTARRAY (not including the 777g character).
There are two general forms for the READ statement:

a) READ <list of variables separated by commas>;
(example: READ X, Y, I, IBA;)

b) READ {<ID: an integer expression>} <list of variables>;
(example: READ {37}X, Y, I, IBA;)
The second of the above forms is used to indicate an identifying integer
for the READ statement; in case of a read error, this integer is reported
to the user along with the appropriate read error code (see Table A4.).
The READ statement reads input words; there is another statement

for reading input characters:

a) READCHAR <list of INTEGER variables>;

b) READCHAR {ID} <list of INTEGER variables>;

This statement takes a list of INTEGER variables as its argument, and
attempts to read one input character into each variable, going from left
to right, until the argument list is exhausted. The indicated integer
character code is stored into each variable. Spaces, tabs, and carriage
returns ARE treated as input characters. If there are not enough input
characters to satisfy the argument list, the system will wait for sufficient
input from completed input lines to be typed.

The second READCHAR statement form is similar to the second
READ statement form; in case of a read error, the indicated ID is reported
to the user along with the appropriate read error code (see Table A4.).

The user may disable the built-in facilities for reporting a read

error by executing a statement of the following form:
SETRDERLBL <label>

This causes the system to note the indicated label, and transfer control
to it instead of printing an error message when the next read error occurs.

Appropriate information is stored into reserved variables when a read

42

error occurs (see Table Al.).

The user may cause his program to take its input from a text file
rather than from the keyboard. At execution time, he may type the name
of a text file, and then hit the READ~IN key. This causes the indicated
text to be read in exactly as if it were typed in. When the text file is
exhausted, a message will be printed out, and input will again be taken
from the keyboard. Note that no change need be made to the user program.

The user may re-read an input word or input character on the current
input line by storing away and later resetting the system's input pointer.*
This pointer is kept in the reserved variable INPTR (see Table Al.).

TABLE Al. RESERVED VARIABLES AND PROCEDURES FOR
THE LEAP INPUT FACILITY
(1) READNUM (INTEGER)
The value of this variable is set to the ID of the offending
statement (if specified) when a read error occurs.
(2) RDERRCODE (INTEGER)
The value of this variable is set to the read error code
number (see Table A4.) when a read error occurs.
(3) RDTATYPE (INTEGER)
The value of this variable is set to the data type code
of the input word if an illegal mode conversion is requested.
(4) ENDOFLINE (BOOLEAN)
This variable is set to FALSE at the beginning of each

READ and READCHAR statement execution, and set to TRUE at

the end of the execution if there is no more input on the current line.
(5) INPTR (INTEGER)

The value of this variable is a pointer to the next character
on the current input line.
(6) LASTINPTR (INTEGER)
This is an integer reserved variable which is used to
store the previous value of INPTR. Each time an input character

or input word is to be read from the current input line, the value

Note that INPTR may not be reset to point into a previous input line.

43

of INPTR is assigned to LASTINPTR. If a new input line must be
fetched, LASTINPTR is reset to the beginning of the new line.

The system uses the value of INPTR as its pointer into the current
input line; the user may save LASTINPTR or INPTR, and reset INPTR
if desired. Note that INPTR may not be reset to point into a previous

input line.

(7) ISCHARINPUT (BOOLEAN PROCEDURE; no parameters)
This returns the value TRUE if there are any characters left
on the current input line, or if there is another completed input

line available; the value FAISE is returned otherwise,

(8) ISWORDINPUT (BOOLEAN PROCEDURE; no parameters)
This returns the value TRUE if there are any input words left
on the current input line, or i there are input words on any new,

completed input line; the value FALSE is returned otherwise.

(9) CLEARKBDLINE (PROCEDURE; no parameters)

This removes all input from the current input line.

(10) CLEARKBD (PROCEDURE; no parameters)
This femoves all completed input lines from the source of typed
input,
(11) READINTEXTFILE (PROCEDURE; Textarray parameter)

This procedure pushes the textfile whose file name is given onto the
stack of input character sources. If the parameter is not a correct textfile name,
a READ ERROR #12 will result.

Example; READINTEXTFILE { 'STANDARDTEXT' };
(12) SETSMACKER (PROCEDURE; boolean parameter)

This procedure allows the user to access single characters
typed on the keyboard before a carriage return is typed. Only the func-
tions READCHAR and ISCHARINPUT are changed. After a call of the
form SETSMACKER {FALSE }, READCHAR will return any character typed,

44

including the five function keys which, obviously, have no effect
when accessed in such a manner. This is a special mode of operation,
primarily for those who wish to use the keyboard as a set of control
keys, rather than as a source of input text lines or words., Under
this mode, READ acts as it always does, but INPTR, LINPTR, and
ISWORDINPUT should not be used.

The normal mode for the read package is restored by executing a

SETSMACKER{TRUE};

Statement.

45

DATA TYPE CODE
BOOLEAN 1
INTEGER 2
FIXED (FRACTION) 3
REAL 4
ALPHANUMERIC 5

TABLE A2. DATA TYPE CODES

if fractional part
0 = error

if 21 = > error

TYPE OF
VARIABLE

TYPE OF

INPUT WORD INTEGER FIXED BYTEARRAY BOOLEAN

REAL error J

INTEGER /M error 0 = FALSE
FIXED error VM error 1 = TRUE
ALPHAN error error error I any other =

ERROR

TABLE A3. ALLOWED DATA_TYPE CONVERSIONS FOR
THE READ STATEMENT

46

TABLE A4. READ ERROR CODES

CODE (in OCTAL) ERROR

1 illegal mode conversion - example:

you tried to read an INTEGER into
a FIXED (fraction) variable.

2 too many characters on this line

3 used ISWORDINPUT while SMACKER
was off

4 you tried to do a READCHAR into a

variable of different type then INTEGER

12 tried to read-in a nonexistent text file

47

Bs TEXT AND NUMERICAL OUTPUT

1. Statements which output a text array:
a) PRINT <text array>;
b) XEROX <text array>;

This statement causes the indicated text to be appended
to the XEROX buffer. This buffer is maintained by the APEX
executive. The following statement causes the XEROX buffer
to be printed and then cleared:

DUMP XEROX;

c) SHOWTEXT {<text array>, <display item ID>, <display group ID>,
<X position>, <Y position> 1};

This is a reserved procedure which causes the indicated
text to be added as a display item to the current display structure.
The indicated position coordinates specify the position of the lower
left comer of the first character.

d) STORETEXT {<text array>, <X position>, <Y position>};
This is a reserved procedure which causes the indicated

text to be displayed on the storage tube at the indicated position.

2. TFORMAT Statements

The FORMAT statement is used to define a format descriptor, and

associate it with a format description. A format description is used to

specify the manner in which printed output is to be formatted. For example,
a format description may indicate the number of digits to be printed after
the decimal point of a real number, or the number of spaces between fields
on an output line, or whether to print or suppress leading zeros.
The FORMAT statement has the following general form:

FORMAT <name of format descriptor> (<format description>);
A FORMAT statement should appear as a declaration in a declaration portion
of a LEAP program.

In general, a format description consists of several data descriptors

which are separated by vertical bar or slash. In addition to separating

data descriptors, a slash causes a carriage return to be inserted on the

48

output line when the format description is applied to data to be output.
Data descriptors in a format specification are matched to data
arguments on a one-to-one basis. A full discussion of the format scan
and list matching follows this section.
In general, a data descriptor consists of a combination of desig-
nators to specify the different portions of the data argument which is
to be printed. Nesting of data descriptors is accomplished by parentheses
preceded by an optional replicator (see the examples). The general form
for a number specification is:
[SIGN] [WHOLE DESIGNATOR] [POINT] [FRACTIONAL
DESIGNATOR] [CONVERSION] [MODIFIER].
Some of these fields are optional (see the examples).
Numbers are converted to characters according to the conversion
designator. These are:

for octal integer.
for decimal integer,

for fraction,

ta| |] R

for mixed plus exponent of 10,

for mixed number, and

x| =

for alphanumeric

The modifier is an integer constant specifying the power of ten
(or eight for octal integers) which multiplies the number before it is
placed for output. For example, T 2, would cause the integer to be mul-
tiplied by 100 (1 02) before processing.

The sign of a number is specified by an optional portion of the
specification. The sign may have either a fixed or floating position.
A fixed sign is declared by having only a single + or - sign. A floating
sign is declared by preceding the sign with a replicator larger than 1.
This defines the sign field. The + causes the sign to be printed regardless
of its value; the - causes only negative signs to be printed.

A fixed sign is printed in the specified position at the left of the

field. A floating sign is printed either at the left of the first significant

49

digit or at the right of the sign field.

A decimal point is indicated by a comma.

Both the whole and fractional parts of a number are used to
describe the digit positions before and after the decimal point. The
two digit designators are:

B Print digits, but suppress leading or trailing zeros

7 Print digits with leading or trailing zeros.

These designators must be ordered if both are used to describe
either whole or fractional parts. For the whole part of a number, (D)
must precede (-ZT) , and for the fractional part, (E) must precede (B).

There are two special output descriptors which may be used in a
format description:

(a) S (insert a space character)

(b) 0 (insert a tab character)

Examples of the FORMAT statement follow:
(a) FORMAT F1 (6 D I);

Specifies a six digit decimal integer with leading zeros supressed.
If a sign is not specified, + is assumed.

(b) FORMAT F2 (- 7 D, 3 Z R);

" Specifies a real number having seven integer digits, and
three fractional digits, with trailing zeros. A sign will
be printed only if the number is negative.

(c) FORMAT F3 (7 A);

Specifies seven integer numbers, which will be treated as
character codes, and printed as the indicated characters.

(d) FORMAT F4 (3 (4DI1i-5D, 6 DE) | 2 A);
Specifies three pairs of numbers (the first of each pair
an integer, the second a real) followed by two character codes.
3. Statements for Formatted Output
There are three statements which generate formatted output:
(a) PRINT FORMAT <format descriptor> , <output list>;

This causes the indicated output to be printed on the Lincoln

(b)

(c)

50

writer (see the discussion of the output list below).

XEROX FORMAT <format descriptor>, <output list>

This causes the indicated output characters to be put into
the APEX Xerox buffer. The user program must force this
buffer to be dumped by executing a

DUMP XEROX;
statement.
GATHER FORMAT <format descriptor>, <output listy;

This causes the indicated output characters to be appended
to a special reserved textarray named QUTPUT. This
textarray may be used as a parameter to the statements
described in section B of this appendix, for example. The
following special statement clears and reinitializes the
OUTPUT reserved textarray:

CLEAROUTPUT;

There are several restrictions on the use of this textarray:
(i) Storage for the elements of OUTPUT is auto-
matically allocated, and is of a fixed length
(500 characters). Do not attempt to re-declare or
assign storage to OUTPUT.

(ii) References may be made to the elements of OQOUTPUT,
but do not attempt to move the 777. character if
subsequent GATHER statements are to be executed
before a CLEAROUTPUT is done.

4. The Output List

The output argument list in a formatted output statement consists

of arithmetic expressions and braced FOR statements. The comma is used to

separate list elements.

The braced ({ }) FOR statement is an iterative output argument.
This means that several elements of the argument list may be indicated by
one FOR statement. The braced FOR statement has the same form as the
regular FOR except that the DO clause is an arithmetic expression or another
braced FOR statement.
Examples: {FOR 1 =1 STEP 1 THRU 10 DO A}
would be equivalent to listing arguments A} . . . AlQ.
{FOR 1 ~ISTEP 1 UNTIL I> 10 DO
fFOR 1 =] STEP 1 UNTIL > 10 DO A, . By, 1}}

would be equivalent to listing elements Ay 1., By ,1. A} ., B2 1. ..

ER R R S

- vt o4

9 il

A10,10’ B1o,10-

{FOR 1 ~ISTEP 1 UNTILI>J DO
{FOR 1 ~KSTEP 1 UNTIL K> 3 DO A; y}}

would cause the variables A} 1., Ay 2. A1,3, Az, 1. etc. to be used.

The processing for formatted output is controlled by the output
list. The format description is scanned and processed until a data de-
scriptor is found. The next output argument is then fetched and processed;
the format scan is continued until there are no more arguments. If the
end of the format description is reached before the output list is
exhausted, a carriage return is automatically inserted, and the scan
restarts from the beginning.
Examples:
FORMAT F (5 D I)
PRINT FORMAT F, A, B, C;
causes A, B and C to be printed as 5-digit integers on separate lines.
FORMAT F (5(5 D I);
XEROX FORMAT F, X, Y;
cause X and Y to be placed in Xerox buffer as 5-digit integers on one line.
FORMAT F (2(5D, 3D E))
PRINT FORMAT F, fFOR 1 -1 STEP 1 UNTILI > 6 DO
{FOR1-JSTEP1 UNTILT> 2 DO AIJ}};
. A

causes array elements All' Alz' A oo ASZ to be printed as

21" "22"

real numbers, two to a line.

52

APPENDIX V
*
SUBPROGRAM LINKAGE FACILITY

A. GOUPTO AND PEELBACK
There is a facility for going up to a LEAP program from a LEAP pro-
gram with input parameters and output parameters. The calling program
executes a statement of the form;
GOUPTO <TEXTARRAY expression> <argument list>;

where the TEXTARRAY contains the name of the LEAP program to be called,
anc the argument list may be;

a. null, if there are no parameters.

b. {<INPUT parameter list>}, if there are only input parameters.

c. {; <OUTPUT parameter list>}, if there are only output para-
meters, and

d. ({<INPUT parameter list>; <OUTPUT parameter list>}, if there
are both.

Input parameters may be variables or expressions; output parameters must be
variables. '
In the called program, if there are any input parameters, a declaration

of the form
INPUT {<dec1aration list> 1;

must appear immediately after USELEAP, or after START if there is no
USELEAP. The declaration list is similar tc the declaration list for a
PROCEDURE declaration, with the exceptions that LABEL and PROCEDURE
parameters are not allowed, and a program may use the "FILE" declaration
to pass the name of a file (or any name) in the public or private directory
as a parameter in the GOUPTO statement. A "directory item" parameter is
put into the connector, and the INPUT declaration on the upper map causes
the text of the file name to be made available. The "FILE" declaration is
used on both maps as follows:

Examples:

lower map: GOUPTO 'BLOP' {FILE 'SAM', . . .}

*
For an introduction to the APEX time-sharing executive and features of the

time-shared virtual machine, see references 6 and 11.

53

Upper map
(in the program BLOP):
START
INPUT {FIIE X, & = o105

After the INPUT declaration on the upper map, X behaves like a

declared TEXTARRAY variable, having the FILE NAME as its

value.

When the called program finishes, it may execute a PEELBACK
statement:

PEELBACK {output parameter list};

or simply execute the FINISH statement,

B OVERLAYS

A LEAP program may be segmented into one main program and
several subprograms (called OVERLAYs). At execution time , the main
program is set up on the user's map, and remains set up until execution
terminates. Overlays may be set up and dropped from the map under
program control. Only one overlay at a time may be set up. The main
program must be no larger than one book of code, and each overlay is
similarly restricted. At compile time, the user must use the BBIN7com-
mand to compile his program if overlays are declared within.

The overlay facility was implemented for three reasons:

(1) to help reduce the maximum core requirementboth at
compile-time and at run-time,

(2) to provide an alternative to the GOUPTO facility, which
may cause large inefficiencies if much information is passed
between maps, and

(3) to get around the requirement (imposed by the VITI-“.L7
system) that the total code compiled for any one program not

exceed two books.

Overlay declarations should appear immediately before FINISH

in a LEAP program. Overlay declarations may not be nested. A LEAP

54

program in which overlays are declared should have the following general form:

START
< entire main program s

DEFINE OVERLAY '<«character string >':
< Statement 5,

DEFINE OVERIAY '«character string ' ;
< statement >;

FINISH
Example:
START
REAL X, Y;
3.0 4X:

DEFINE OVERLAY 'OVL1';
BEGIN

END ;
FINISH
There are three statements in LEAP which are related to the over-
lay feature;
(1) CALL <« textarray expression s;
This statement causes the overlay with the indicated

name to be set up, and control to be transferred to the first state-
ment in the overlay. If a different overlay is already set up when

this statement is executed, it will be dropped from the map.

(2) OVERLAYRETURN;
This statement causes control to return from an overlay
to the statement following the CALL statement last executed.

Note that one overlay may call another overlay; the calling

95

overlay is re-set up before control is returned.

A GOTO statement which transfers control to a label in the main

program may be executed from within an overlay (if the label is not within
4 block). Note that labels declared within an overlay may not be referenced

from outside the overlay.

(3) DROPOVERLAY;
This statement causes the current overlay (if any) to be

dropped from the current map.

56
APPENDIX VI

ERROR DETECTION IN LEAP

PRODUCTION ERRORS

i)

These errors appear in the syntax phase of compiling .* They are
noted by the following comment;
PERRXXXX EDITARG
-------- (line in error)
where, XXXX is the error number, EDITARG is a standard argument defining
the line in error, and asterisks mark the current scan pointer at the occur-
rance of the error.

HINT: If the error occurs on the first word of the line, then the error may
be caused by an incorrect end to the preceeding line.

B SEMANTIC ERRORS
These errors are caused by the VITAL mechanisms and may in-
dicate an error in the compiler. They are noted by the comment:
SERR XXXX EDITARG
--------- (line in error)
where XXXX .and EDITARG are as previously defined. If these errors occur,

the user should consult the staff.

(S SEMANTIC FAULTS
These faults occur in the semantics of the language and are noted
by the comment:
FAULT XXXX EDITARG
---------- (line in error)
where XXXX and EDITARG are as defined for production errors.
A complete tabulation of both compile-time and run-time errors

and probable causes is presented below.

*The LEAP compiler was written using the VITAL compiler-compiler, and is

housed in the VITAL system. For information about VITAL, see reference 7.

57

(ALINVYADI sW ¥V 30 LMVISNOD ¥V 38 l1saW) X3IONI SW V9311

JEVS 404 LNIWNOY¥Y QvE

JRYS 404 LNIWNIYY QvE

NOISSI¥dX3 RIIT 1v9311!

Aly3doyd 1v93T!

NOILINI 430 33n03720yd v 40 301SLn0 03sn 38 LONNYD JIFOISII-IXVS

11 SONIS WOIHM LN3W3LYLS ASYVIZOT IHL d0 30I1Sin0 T9S0T Vv 3Sn LONNYD nOA
378YI y¥A 1V¥93771

SINIWNIYY 40 ¥3IOWAN ONONM 3IHL HLIM 0377VD SI 3yn03H0¥d SIHI
INJW3LV.IS NOILVYILL NV 40 301Sin0 03sn 38 LONNYD IANTINDS

379V IyVA NOILVYILI V93101

J79Y1IyYA NOLLVY3ILI V93T

INIWNIYY 3Fy¥n03D0¥d TVIITTI

g 378YIyvA 3ON3¥I43IY VI3
S3dAl 37181 LVHHOINI JAVH SNOISSINIX3

S3dAL 3181 LYJHOINI JAVH SNOISSINIX3

S3dAl 3781 LYJIWOINI 3AVH SNOISSI¥IX3I

X131V Vv LON SI ¥3IL3WVyvd

38 1SnW HI0B - YOLVINWNIOY DIWYNAO JHL NI SI NOISS3¥dXI 3INO AINO
S3dAl 3181 LVJIWOINI JAVH SNOISSINdX3

. S3dAl 3781 LVLWOINI JAVH SNOISSIYdX3
1d1y288nS INO AINO FAVH SAVYYVLIXIL

XI1ylvW v LON SI ¥313WVyvd

NOILV¥VI230 ¥3LIWVyYd 138V 1v93Tl

IN3W3ILVYLS IRINT NV NI AINO 3ND20 NVD NOILVyYYId>3Q ITTI V

dn INIO09 N3IHM ¥3IL3IWVyVd ¥V SVY 139V ¥0 I¥n03H0ud ¥V SSVd L, NV)D
JdAL VIVO NOILINALA ¥V ¥04 0IMNOTTY S3IdAL VIV 3NdWIS AINO

N¥nl3y 40 3sn 1v93I!

AINQG NOILVYVIDI0 3yn0370¥d ¥V NIHLIM 03Sn 38 LSnWw TRIATITT

) INVLISNOD V93111

WY¥00dd V 40 ONINNIOIG 3HL LV SITIYIIOIS OoNV TT9307T OnNV SRITT I¥VI1230 AINO NV)D
NOILV¥VYID30 ave

(XYW 02} 03 ¥Y1530 SIVI0T ANVHW 00!l

INISSIW J73TISH

(XYW) @3yVI1D230 SIILYIL0¥d ANVW 001

¥0d 33S - MOT4y3IA0 I18VL ¥IIdW0D

ZsT
rsi
Lsr
regr
9l
vl
£I1817
ersr
rrsr
9
vl
[B8
£01
1017
f£r101
Zro1r
rror
ror
20071
roor
oor
92
09
sy
v
iy
14
L5
9f '
s
r1e1
2ivg
11e¢
olvs
[2
ros

§ITVvI .v

§9933ONY-5§I35 SITIAVT

58

33n03508d V NIHLIM WO¥4 AVIY3A0 NV VD L,NVYD

IWYN AVIY3 A0 gve

SAYINIA0 3sn 0L 919 00L SI WY¥I0¥d NIVW 3HI

(378¥13vA ¥393IIND NY 39 ISAW ¥VHOIOVIY 0L LNIWnIyY aVvE
0¥3y 0L LNIWnIyVY av8e

0v3y 01 INIWNIYY qv8

03NI 430NN NY 0L WANONAS

ONNOS AQYI¥IY ST I19VINYA NOILVY3LI SIHL

TVI0T YV LON SI 319VIyVYA NOILVYILL 3IHL

SIHL WIVID3y L,NV)

TY50T v L1ON SI 319VINYA NOILVYILI 3IHL

JYAAIIT 1v93111

¥3L3IWYyvd IIS 1v93I71

COXYW 02) 03¥Y1230 $I¥I0T ANVW 00l

(134 SIHL JIONVH LNYI) SVD07 IyV SyILIWVyYd Hlog
NOISSI¥dX3 RITT NY SV 03Sn SI HOIIHM JIITIT Vv 40 Llyvd 39 IIST ¥ JAVH L.NVD
SAYI0T 7Y SYH LI ¥0 SIVY307 33yd ON SYH 3dIyl SIHL ¥3H1I3
STV30T 1MV SYH LI ¥0 STVI0T 33y4 ON SYH JTITIT SIHl ¥3IHLIZ
JGYIYYA 3INITNI 4Ty 1VIII

(Y393 INI 38 lsna?) ¥3L3WVyvd I1v93TI

3789Y1 YA V931

¥y0ldIya2s30 IVAEOI V9311

¥y0LldIyds30 IVRIGT 1vI3nl

INVISNGD Vv 1ON SI IN3NOIX3 3HI

INVISNOD V LON SI ININOLX3 3HI

¥OL1V2I1d3y ¥ 40 3Isn VI3

30LVIITd3y ¥V do 3Isn 1vI3I

© LNVYISNOD ¥V LON SI ¥O0lVoINd3y

3I9VINVA ¥ ¥ON LNVISNOD ¥V yIHLI3N SI ¥0l¥VDINdIy

YITIINT NV 40 lyvd IVNOILOVYd IHL 3AVL L, NV)D

NOISS3ydX3 NV SY JIATIOOYI v 3sn L.NV)D

INJA3Lvls ¥ SY NOTISNAT VY 3sn L.NVD

TIT33d083 1v93111

X7E97IRIT v LoN SI INIW3ILVLS INTIS 0L INIWnoyV

SINIWNOYY 40 ¥ITWAN INOYM 3HL HLIM 0377YD SI 3yn03H0¥d SIHL
SIN3WNIYY 40 ¥39WNN INOYM FHL HLIIM g317Y> sI JungIH0ond SIHL
SNOISSI¥dXT SW NIVHD INVD nOA

SNOISS3YdXT SW NIVHD L.,NVD noaA

ALITVAR3 SW ¥ NIYHY L.NVD nOA

2ry
109y
ovy
sy
rosy
ofsy
vLs
rsa’s
£91%
1¢§¢
SS¢
0sf§
LvE
10v¢§
ovs
L5
rsss
SEf |
92§
LO0f
90¢
P2
rse
£52
2se
rse
0s2
£
o2
I 2 X4
sre
21z
102
902
s02
2o
vl
01
vst

59

IYWY04 LYW¥04 V93111 zv
779D 3Yn0320¥d YV ¥0J LVA¥0d V9311 Iy
V) 3¥n030yd ¥ 40 3Sn V9311 09
OITT AYNOILIONOD y04 LV¥Wy0d V9371 L £
HOLIMS 04 LV¥W¥04 V93711 9§ %
39YINYA ¥V 40 35N V931 s
NOISS3ydx3 RITIT NY 40 3Sn 1v¥93711 X3
NOISS3I¥dX3 WIIT NY LON S1 SIHI £
I19VIyVYA ¥V LON SI SIHL zs
NOISSI¥dX3 NY 40 3Sn 1¥93111 s
XI¥LYW ¥V 40 3Sn V93711 L2
NOISSI¥dX3 R3ITT NV 40 3Sn V93711 92
L 40 35n 1¥I93111 1 X4
SI 40 3sn 1v93111 »z
AVyYY NV 40 3Sn V931 £2
1¥¥1S NOISSINdX3 VY9311 ze
1yvYls INIW3LVYLIS V931 1z
lyvls INIW3Lvis ¥93111 02
NOILVY¥Y¥I23Q V93111 21
NOILYyV1239 1v¥93111 91
NOTLVY¥YID3Q V93Tl st
NOILY¥YI1230 V93111 v
(SYILIWVYYL,) NOILY¥VII3Q 1vI9311 §1
(3¥n0300¥d? NQOILY¥YIDI3Q VI3111 21
3¥N03H0¥d NOILY ¥YID3I0 1v9IINI I ;
9YNY3ILX3 NOILY¥VIDIQ Y93I ot
NOILY¥YI23Q0 V931 L
AVYYY (IX3L) NOILYY¥YID3Q V930Nl 9
NOILY¥YII30 V93171 §
zo_h<m<4umox_mh<zJ<QMJJ_ ,
oz_qzmzo_k<m<Jumc4<ou44_.n
~u4mz_m~zo_k<m<4umo4<QMJJ_ ~
oz_zz_oumz<moomm4<ou44H ~

(S, ¥y3d) SY0U¥YI NOILINGONd.D

31000 Vv 109404 A19VE0Nd NOA Xxxoor
S3dAL YIVQ 3791LVIWOONI A9 03SNYD A1IVASN...INILAOY 3¥0LIS NI ¥O¥y3 £2

(S ,¥¥35) SYO¥Y3 DILNYWIS .8

60

NOI0D-1W3S ¥V INILLIO¥04 (n
Y3HLI3 WO¥d 3SIYY SYO¥¥3 NOILINGONL *A77VASn
JION

W3IT I35 yo *XVIYYIRIT X939V NV 40 3Sn v93701 sor
30d 1vH FIISKS por

303 11vH FIFISKS sor

30d vy FIISTS zor

973 1vOTIFISLS 101

dA0T NI ¥313WVyvd JTTI ol ONI v93TI 001

YO YY3 LVWy04 IIVETIIT il

IYWY0d NOILIVYVID3O LVWy0od Tv9I3TT] 9.4
LYWY04 NOILVYYIDI3Q LV¥Wy0d4 V9311 v
IYW¥04 NOILVyYID30 LVWY04 V93701 s
LVWY04 NOILVYYID3Q LYWy0d vI3INI 21
LYWY04 NOILVYVIDI3Q LvWyod AvI3111] r;
IYW¥04 NOILVNYID3Q lvWyod 1vIo3TI1 01

LYW¥04 NOILVYYII30 LYWy0o4 1vo3ITTI 19
LYW¥04 NOILVYYID3Q LYW¥04 1¥93171 99

ON3 INIWILVLIS sW Qve 59

SW NI 1D0yISNOD V93711 [&]

SW NI 1on¥ylSNOD v93T11l £9

SW NI 1onylsSNOD 1v93711 29

SW NI 1OnylsNOD AVvI937T71 re

SW NI DInylSNOD V931l 03

SW NI 1On¥lSN0D 1v93771 LS

SW NI LypulsNOD 1v93771 96

SW NI 1on¥ISNOD V93711 [

SW NI 1OnylsNeD v93I11l [&]

ORI NY 109¥04 A18V80¥d NOA - ININILVIS ¥ 40 3Sn 1v93111 £
ININNIO33 NOISSI¥dX3 TVIIVIRIT y¥o XVIIV 1vo31nl 25
IN3WILVLIS O7T 1v93771 rs

IN3W3LYLS 07T qv93111 0s

IN3W3LYIS O7T 1v93111 Ly

INIW3LVLS §7T 1v93771 9»

gad 1vd FYISKS s

INIWILYLS T7T 9v93001 by

ON3 N30 LVWy04 1v93nTIl £y

61

JO¥NI ISO4SNYYL ¥0 ISyIANI

HO¥YI LNYNIWNILIO

SANNCE 40 Ln0 379VIYYA HOLINS

SIDINLYW LOVYLINS ¥0 20Y NI ¥O¥¥3

SLYWINW ¥VIVIS NI ¥O¥y3

SLYWINW NI yOu¥3

T LON SI AVYYY YNOISNIWIQO 3T9NIS Y NO ONNOS y3MET 03¥VIO3Q 3JHL
INIVA ON SYH 3J18VINYA DIWYNAQ SIHI

INIWILVYLIS HOVINOL JAILVIDOSSY NY 40 1nO dwWnf 0L ldw3lly
AVIY3IA0 Q3NI AT ONN

SONNOS 340 L1no LdI¥dS9nS

JIYY0LS 40 X009 ¥ I9oyva 00l 03LSInD3Iy JAVH NOA

39Vy0ls 40 $%009 ANVW 00L @3LSIn0Iy JAVH nOA

S181X3 3741yl HINS ON

ON3 3HL 0l AYHL ONTTIVY A9 NOILONNS V WONS Nunl3y 0L 03Iyl no4A
OI3ATT NO ¥0¥¥3

IN3W3LVIS AJVITI0I v 40 1n0 dwWnf 01 C3Iyl ¥n0A

JINTISAIISTVIT oL NIAIY TWYN J¥nlonyls gve

INIWILVYLIS & NI ALdW3 SI1 I35

T3S ¥ 40 3sn 1v93711

SRIIT ANVW 00l

RITT 3384 ¥ RTYI53Y oL a31yl

RIIT 03yv1)30 V- ATYI538 oL 31yl

TRY 40 3Sn 1vI3111

MO 4¥I A0 JynldinylS IINIANOLSINY0D

Hedy3A0 39V¥0LS 3LVadn

394¥1 001 ST Janloinyis

SINILNOY JAILVIDOSSY JHL 0L 03ISSY¥d SVYM ¥IIJILINICQI TVNNILNI 0¥3Z ¥

Q ~ &N ™M 9 N W
Lo B B e I L))

~ N M W 0~
~ N N ~ 9 9 ¥ 9 9 9

[

Q ~ &N ™M 9 N W N
-

N ™M T WV W N

T

-S¥39WAN 3S3HL
0L 301n% ¥ SI INIMOTT04 JHL .¥IIWAN ¥ON¥I NY HLIM In0 03dALl J¥V SyO0¥¥3 JVIT *ATIVWAON
302 0L 213 *S,37T *SNOILINYLSNI CINIJIONN Lu0d3y 3ISVITd

RTJ39 HLlIM dy019

M3 ¥ ONILYYIS LAOHLIM INIWILVIS ¥V MOT104 NOILYYVII3Q ¥V ONIAVH
30

SUNI-NTTIT INIHOILIVW A143d0¥d LON

530993 dvI

SY0IFI"IATI-RAY

(g

62

WY A¥0LDIYIO V93T LON SI 3WYNIIL -- 413501 zort
N3d0 3714 ON SI I¥3IHL -- J135071) rort
FWYN AN0IDI¥IC V9371 LON ST 3WYNITIS -- 2053IyYyNIISSY zoor
C3INI 43NN ST JWYNITIL -- 410V3y §0¢
3714 Y 40 IWYN LON SI IWYNITI4 -- 4lav3y £0¢
JAYN A¥0LDINIQ VIIY LON SI IWYNITIL -- 410v3y zoy
JI14 LX3L ¥V LON ST Q0IWYN 3714 -- 4lav3y oy
3714 ¥ 40 IWYN LON SI 3IWYN -- J0SniviSiy0odly ros
dYW 0314173dS MO39 -- NISLVHM 90r
YIAWAN JdVN OV9 -- NISLVHM 10v
03123103d ST IWYNITI4 -- ITI4IWYNONYINLIS 91¢
3ATLIVI3IN ¥0 0¥3Z HIONIT -- 3T14IWVNONYINLIS 90§
¥3IOWAN 008 3191SS0dWI -- FTTAIWYNONYINLIS s0¢
0r NVHL ¥3ILV3IYD HIONIT -- IT14IWVYNONYINLIS po§
JWYN A¥OLDIINIC Y937 ¥V LON SI 3JWYN -- ITIJIWYNONYINLIS zos
008 €314153dS NI dn L3S AQYINTY 3714 -- 3IT14IWVYNONYENLIS 1og
+A¥0 13310 NI Q314153dS %009 NI dn 135 39 AINO AV 3914 379vInd3XI -- 311 4dnlds s12
ALdW2 LON SI %009 3HL -- 3714dnids riez

~A¥0LOINIC NI 0314153ds 3008 NI dn 13S 39 AINO AVW 3714 W3ILSAS 319vInd3IX3I -- 3I714dnl3s orz
HIGWANI009 FT9ISS0dNT -- 371 4dnlds s02

JAYN ANOLODIYIO Y937 LON ST IWYN -- 3IT14dnl3s §02

3714 ¥V 40 JWYN LON ST 3JWYN -- 3I714dni3s zo02

O3INIJ43IONN ST 3IWYN -- 371 3ddnt3s 1oz

JATLYOIN ¥0 0¥3Z HIINIT -- 3114dwW3dldnl3s 301

YIGWAN H009 3191SS0dNWI -- IT14dWILdntiIs s01

07 NVHL ¥3LV3IYD HIINIT -- 3114dnW3Lldnl3s vol

1009 0314103dS NI dn L3S AQYI¥TV 3114 -- I144WILdnias rot
SNOILINIA3Q - ¥0¥NT WILSAS WO dsSvyw Iy,

N340 INON HLIIMN 3714 IX3L 0LNI 3S07TD ¥0 Ind 0L INIAyL 2!
NId0 ACY3YTVY INO HLIM 3704 LX3IL ¥ NIL0 0L INIANL Iy
LVNY04 ¥3d0ud NI LON 37014 LX3L ¥0 avO ¥3INIOJL IWYN 314 29
(YOLVNIdo VYWWVOY JdAL VIVO INJLSISNOONI SYH wW3lI 39
AVYYYLXIL ALdWI NV 1103 0L Q31 ¥l NOA 59

J0094L4W3 01 ¥313wvyvd Qve X

dn 13 S ¥344n9 nyHLIILIYN ON £9

S¥344n8 NYHLILINM 2 dnl3S 0l Q3Iyl Z3

LdWILLY NOISHIANI NO ¥VINONIS SI XINLIVW 19

YO Ny¥I SIDIyLVW NIOFQV 03

qO¥Y¥I XIylvaons LS

Xy
Xy

439FIND NYHL 3dAl IN3IYIIHI0 H0 3

63

3714 H119nd ¥3 1N
$39¥d ov
H1IION21 3A11V93

3714 AINO - @
JHYN A

SIONVYHD ANV

TTYIYR ¥0d4 USINIT NI 30y¥3
STYATAN NI ¥0¥¥3

009) W3LI 3INO ¥04 3J4niS HONW 00l
003 R3ITT 3INO ¥04 43nlS HONW 00l

8
4

W s.,08!
WSs.0sl

3714 L1X31 IN3LSIX3-NON V NI-OV3IY¥ 01 031yl
IT141%31 SIHL NI A3 NIQVY3y

3714 1X31 SIHL NI ¥31)5VYyvH)I 1vI3TI1I
N9YIYYA Y OINDI ¥YHOQY3Y VY 0Q 0L 031y. NOA
INIT SIHL NO S¥3ILIVYYHD ANVYW 001
031dW3LLY NOISYIANGY 3dAL VIVQ 1V93TNI

1dW3LLY Lndlnd NO MO14¥3A0 VITYINWNN
03 LdJdW3LLVY NOISY3IANOD 3dAl VIVO IVI3II]
INIWILVIS ¥IHLIVD NO HO0T14¥3A0 ¥33d4n9d

«¥.0.d MVD -S¥3IIWNN ¥3HIO

Y NVD ¥3Sn 039311AI¥d AINO -- 40SNLYL1SL3S
NYHL 3¥0W 40 3714 INILVI¥ -- J0SnLVISI3S
N 30 0¥3Z 40 3714 INILVIY -- 40SnlVISL3s
O03INI 430NN ST IWYN -- J0SnivisSL3s

Y3y 40 HIONIT ¥3LaY LONNVY -- Josnlvisids
Y0123 ¥I10 Y937 L1ON SI JWVYN -- J0SniVLISLIS
3713 ¥V 40 3IWYN LON SI IWYN -- 40Snlvisli3s
ISNIY9Y 03153103d SI 3714 -- J0Snlvisias

N340 3714 ON SI 3y3H!l -- 4INIVIINd

N3d0 3714 ON SI 3J¥IHL -- JLINIYVHDINd

304 ¥V 40 3WYN LON SI JAVNIIIL -- 4135071

- N -

550993 34033

2zl
rt
or

5y0933 vy

590993 IAJIAT

oret!
Lov 1l
901
S0z1
povlI
so0v 1
2ov I
roetr
rostr
roer
f£O01T

APPENDIX VII

64
MISCELLANY
A. OTHER RESERVED FUNCTIONS
DATA TYPE FUNCTION NAME ARGUMENTS NOTES
FIXED SIN FIXED; part of w;
i.e., .5=190° SINE
REAL SINR REAL number in radians SINE
FIXED CcOS FIXED; same as SIN COSINE
REAL COSR REAL number in radians COSINE
FIXED ATAN {AX, 4Y} both FIXED ARC TANGENT
REAL ATANR REAL number ARC TANGENT
FIXED SQRT FIXED SQUARE ROOT
REAL SQRTR REAL SQUARE ROOT
FIXED PYTHAG {X, Y} both FIXED comgutes SQRT
(X% + Y2
REAL LOG REAL LOG g
REAL LOGE REAL LOG,
REAL EXP REAL eX
B LEAP BIN MODES

The "bin" command to VITAL may be followed by a vertical bar, and

an octal number.

)
2
< 8
4

S

These mode numbers may be combined:

e.g.

| 1 causes the LABEL table to be Xeroxed
| 2 causes the SYMBOL table to be Xeroxed

| 4 causes a formatted listing to be Xeroxed

, 10 disables the compilation of code to check subscript
bounds and SWITCH bounds.

,20 disables the compilation of code to check the data
type of LEAP items when vy is used.

C. SYNONYM FEATURE

| 7 causes all three listings to be Xeroxed

One may define a synonym to a declared variable or to a procedure

in LEAP; for example, if XYZ is a declared variable or a procedure, then

W = XYZ:

65

is a DECLARATION which will assign the "semantics" of XYZ to W,

Subsequent reference to either XYZ or W will have identical meaning.

B NO KEYBOARD BUFFER OPTION

The following declaration, occurring anywhere in a declaration
portion of a LEAP program, will suppress the assignment of a keyboard
buffer at run time:

NOKBBF;

E. SEGMENTING A LEAP PROGRAM DIRECTIVE
There is a feature in LEAP which allows the compilation of a

LEAP program from text files rather than from a VITAL directive. This is
useful if the directive is larger than two books, or if core space at com-
pile time is at a premium. Only one text file is set up at a time during
compilation.
Note that:

(1) The user cannot ask VITAL for a program listing, or for

a formatted listing.

(2) Compile~time error messages will usually be garbled.
The use of this feature is described below:

The user deals with his program in text file form.
He may direct the compiler to take its input from the keyboard,

and proceed to specify the text files which are to be read in.

The compilation is then performed.

The user directs the compiler's attention to the keyboard by ask-
ing to compile a program consisting of one special word:

GETFROMKB
He specifies that a text file be read in by typing the name of

66

the text file followed by the READ-IN key. For example, if
BLOP is a large program, having TAG as a label about half=-
way through, then the following sequence of events in VITAL

will compile BLOP:

TYPED BY
SYSTEM CLEAN
USER wwl SLEAP
USER w=C BLOP
USER ~=DIR Fl|| #-TAG
USER »=DIR FF|| TAG— ?
USER »=FRESH
SYSTEM FRESH
USER »=INS %
USER GETFROMKB
USER
USER w=BBIN
USER F R
USER FFR
SYSTEM o
F. OTHER RESERVED PROCEDURES
1. SHADE;
This causes the user to go into the shade.
2. HELP;

This causes a HELP call.
3. ASSIGNRECOGNIZER (<TEXTARRAY >);

The TEXTARRAY parameter indicates the name of the
file which is to be used henceforth as the character recognizer.
4, There is a reserved procedure which calls the character

*

recognizer: RECOGNIZE;

When this procedure is called, a full inking buffer should be
available, and the ASSIGNRECOGNTIZER procedure should

previously have been called,

*For information on the TX-2 drawn character recognition facility, see
roforence 1.

67

The following reserved variables will be set up by the procedure:

@CHAR (INTEGER) character code (-1 if no recognition)
aXMAX (FIXED) maximum X coordinate
oaXMIN (FIXED) minimum X coordinate
aYMAX (FIXED) maximum Y coordinate
oaYMIN (FIXED) minimum Y coordinate
aXCEN (FIXED) X coordinate of center
«YCEN (FIXED) Y coordinate of center

EXAMPLE:
(reserved words are underlined)
START
INPUT {FILE REC };

ASSIGNRECOGNIZER {REC};

GE:I‘NEXTINT;
IF aCAUSE = 17. THEN.
BEGIN
RECOGNIZE;
IF oCHAR = -1 THEN HELP;

END:;

FINISH

5% A reserved procedure for "going up to" the character-recognition
trainer (STRAIN). This procedure expects the ASSIGNRECOGNIZER procedure
to have previously been called.

TRAIN;

6. A procedure which takes a TEXTARRAY as a parameter, and "goes

up to" the scope editor
EDIT { < TEXTARRAY >};

68

7 Two reserved procedures for allocating and emptying books
at run time:
(a) FREEBOCK - an INTEGER function which requires no
parameters, and returns the number of an empty book
(1 thru 17) as its value.
Book 0 is automatically free for use; allocation of
other free books must be done through FREEBOOK.
(b) EMPTYBOOK {<INTEGER quantity > };
A procedure which causes the indicated book to be
emptied (JED 123).
8. KEYBOARDEDIT {<TEXTARRAY > }; This calls the keyboard editor,
with the indicated TEXTARRAY as input. It works just like the
EDIT procedure.
9. BASICTRANSLATE {<TEXTARRAY >} ;
This passes the indicated text up to SBTF.

69

G. EXTERNAL PROCEDURES

This is a facility for defining a procedure or function that during
run-time will exist outside the LEAP system. The experienced user will
find this useful in linking MARK 5§ and LEAP programs. The following is
the external procedure declaration form:

EXTERNAL <LOC>, <normal procedure definition header>;

where LOC should be an octal integer constant defining the absolute
location of the procedure and a regular procedure definition follows.
Example: EXTERNAL 411.,REAL PROCEDURE SUMSQ {REAL Al, A2};
defines the real function SUMSQ at location 4118 with two real
arguments.
The calling sequence generated by LEAP is
IESlO LOC
address of argument 1

address of argument 2

address of argument n

expected return point -~

I LIST OF RESERVED WORDS AND SYMBOLS

Note that all Mark 5 op-codes are also reserved words in LEAP.

70

dVHOO
131311
NIS1IVHM
REFEY]
330NN

8901

£90L
HONONHL
£MS108L
W3LlI3x0ls
ANIS
ERIE-Fe N1k
RERNE e S
1x
QIA31113S3y
WIVID3Y
NIJIXIINICYIY
IVHL AL
LYAlnd
INITL<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>